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Molecules that bind sequence specifically to double-stranded
DNA in a predictable way are of high interest in chemistry,
biology, and medicine, in particular if the molecules can be
designed to bind desired DNA targets. In this context, triple-
helix-forming oligonucleotidés and, more recently, strand-
invading peptide nucleic acids (PNAhave attracted consid-
erable attention.

Sequence-specific binding of homopyrimidine PNAs to
homopurine targets in double-stranded DNA takes place via
strand displacement upon the formation of an internal Watson
Crick—Hoogsteen base-paired PMNADNA triplex.2 Such
binding is thermodynamically favored because of the extraor-
dinary stability of PNA—DNA triplexes employing the ho-
mopyrimidine triplex motif involving FA-T and C'-G-C
HoogsteerWatson-Crick triplets, in which the two PNA
pyrimidine strands are preferably antiparafleHowever, both
the binding efficiency and sequence discrimination are kineti-
cally controllec?
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Figure 1. Titration of the binding of PNA H-GAGAGGAAAA-
LysNH, to oligonucleotide 5d(TTTTCCTCTC) (Job plot). The
measurements were performed at XD in 100 mM NaCl, 10 mM
sodium phosphate, 0.1 mM EDTA, pH 7.0.
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It is well established that DNA can also form triplexes in
which the third strand is homopurine. This triplex motif
involves AA-T and GG-T triplets in which the two purine
strands are antiparall&l. In order to explore the possibilities
of this purine triplex motif in a PNA context and thereby
potentially expand the recognition repertoire of PNA, we
synthesized a homopurine decamer PNA: AAAAGGAGAG in
either of the two orientationfs.
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Figure 2. Binding of PNA H-AAAAGGAGAG-LysNH, (parallel,
lanes 2-4 and 16-12) or H-GAGAGGAAAA-LysNH, (antiparallel,
lanes 5-7 and 13-15) to a double-stranded-8(TTTTCCTCCT) DNA
target cloned into thBanH1 site of pUC19. The plasmid was cleaved
with Puull and 3-3%P-labeled at thélindlll site. The 156 bHindlll —

Puull fragment was purified by gel electrophoresis and incubated with
0 (lanes 1 and 9), 1 (lanes 2, 5, 10, and 13), 3 (lanes 3, 6, 11, and 14),
or 10uM (lanes 4, 7, 12, and 15) PNAIfd h in 10 mMTris-HCI, pH

7.2 at room temperature. Probing with diethyl pyrocarbonate (DEPC)
(5%) was performed for 5 min at room temperature, and probing with
KMnO4 (1 mM) was performed for 15 s at room temperature. DEPC
or KMnO, reaction was detected as DNA strand breaks following
piperidine treatment. An A- G sequence reaction was run in lane 8.
The DNA samples were analyzed by high-resolution polyacrylamide
gel electrophoresis and autoradiography. The autoradiogram is presented
in the figure (for further details, cf.: Jeppesen, C.; Nielsen, FFEBS

Lett. 1988 231, 172-176). The sequence around the PNA target (arrow)
is indicated to the right.
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Table 1. Thermal Stability of PNA-DNA Complexe3

Tm, °C
H-AAAAGGAGAG- H-GAGAGGAAAA-
oligonucleotide LysNH; LysNH,

5-d(CTCTCCTTTT) 69 57
5-d(TTTTCCTCTC) 56 67
5-d(TTTTCCACTC) 50

5'-d(CTCACCTTTT) 52

H-CTCTCCTTTT-LysNH 70 50
H-TTTTCCTCTC-LysNh 50 69

aBuffer: 100 mM NaCl, 10 mM sodium phosphate, 0.1 mM EDTA,
pH 7.0. Heating rate: 0.5 deg/min at-30 °C.

The binding of these PNAs to complementary deoxyoligo-
nucleotides was analyzed by thermal denaturation (Table 1).
The results revealed a surprisingly high (67—69 °C)’ for
the antiparallel complex (which is approximately A0 more
stable than the parallel complex). Previously we have found
that decamer mixed-sequence PNBNA duplexes melt around
55°C 8 whereasly's around 70°C are characteristic of decamer
PNA;—DNA triplexes? Since, in analogy to DNA triplexes,
homopurine PNAs might form PNAPNA—DNA triplexes, we
determined the stoichiometry of the complex by Job plot analysis
(Figure 1), which clearly indicated the complex to be a PNA
DNA duplex. Furthermore, the thermal transition did not show
hysteresis which is otherwise characteristic of triplex formation
with monomeric PNA,

Thus this homopurine PNADNA duplex has a thermal
stability comparable to that of a PNADNA triplex and could

therefore be expected to bind to a double-stranded DNA target
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diethyl pyrocarbonate, an acylation reagent that reacts prefer-
entially with adenines and to a lesser extent with guanines (at
the N7 (or N3) position) of a perturbed DNA helix or a single-
stranded DNA regioA? We therefore take this reactivity as
evidence for strand invasidA. This conclusion is further
substantiated by KMn®probing experiments which showed
that thymines proximal to the putatively displaced PNA target
reacted with permanganate in the presence of PNA (Figure 2,
lanes 9-15). Thus, as previously observed for homopyrimidine
PNA—dsDNA strand displacement complexés,the DNA
duplex flanking the PNA target is sufficiently perturbed to
expose thymines to attack by permanganate. Furthermore, the
PNA antiparallel to the target bound more efficiently than the
parallel PNA2 We were not able to detect binding by gel shift,
and consequently, the complex must be of lower stability than
the homopyrimidine triplex strand displacement complexes,
despite the comparable thermal stabilities of the PNDNA
complexes involved. Therefore, strand displacement by PNA
appears not to be solely a consequence of a very stable complex
with the target DNA strand. Other factors which could be of
dynamic nature must also play an important role.

In conclusion, we have shown that a duplex-forming PNA
can bind to a double-stranded DNA target by strand invasion,
albeit with lesser efficiency. Thus general PNA strand invasion
by mixed purine-pyrimidine sequence PNA should be possible
using PNAs that bind their single-strand targets more strongly.
However, the results also show that other properties of the
complex are of importance (most probably related to dynamics)
and need to be analyzed and controlled.
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